Building Blocks for a Post-Marketing Surveillance System

K. Arnold Chan, MD, ScD, FISPE

i3 drug safety and Harvard School of Public Health
Post-Marketing Surveillance System

- Ideally,
 - All health care products (prescription Rx, OTC Rx, vaccines, devices)
 - All segments of the population
 - Automated
 - Acute and long term outcomes
 - Optimal signal-to-noise ratio

- In practice, probably will include
 - Spontaneous reports (AERS, VAERS, …)
 - Enriched claims data from multiple health plans
 - More utilization of Electronic Medical Records (EMR)
 - Specific registries
Building blocks

- Data
- Integrate data from multiple sources
- Methods and tools to analyze data
 - Signal detection
 - Signal assessment
- Personnel to develop and utilize the system
 - Skill set / expertise
- Feedback / Risk communication
- Program / system evaluation
 - Further enhancement of the system
 - Assessment after regulatory actions
Data for post-marketing surveillance

- **Primary data:** labor/resource intensive
 - Phase IIIb / IV trials
 - Registries
 - Disease specific
 - Drug (class) specific
 - Outcome specific
 - Spontaneous reports

- **Secondary data:** administrative
 - Health insurance claims
 - Augmented with additional data elements: medical records, National Death Index, socioeconomic indicator, patient reported outcomes, biological specimen
 - Electronic medical records
 - Evolving standards, multiple parties/platforms
Strengths and limitations of different data sources

- **Claims data only**
 - Good for selected applications

- **Claims data Plus**
 - Well-established, scientifically valid, and widely used

- **Electronic medical records**
 - Great potential
 - Further development
 - Standards (HL-7, SNOMED, …)
 - Methodology such as natural language processing
 - IT infrastructure
 - Common platform to enable users to pool data from different sources
 - e.g. Massachusetts eHealth Collaborative
Data integration, an example

- Data derived from 10 health maintenance organizations, members of the HMO Research Network
- Funded by AHRQ (U18 HS 11843), Centers for Education and Research on Therapeutics (CERTs)
Data integration from multiple sources

- Key ingredients
 - Personnel
 - Technology
 - Rules / regulations / data sharing mechanism

- Some thoughts on data integration
 - Data ownership vs. Data use
 - Transparent and standard ‘data cleaning’ process
 - Metrics to represent quality of data
 - Standard operational definition for common constructs
 - Drug use, hospitalization, death, …
 - Consistent interpretation of HIPAA
Methods for post-marketing surveillance

- Signal detection / Hypothesis generation
 - Data mining with no prior hypothesis
 - Spontaneous reports
 - Data with numerator and denominator (e.g. i3Aperio™)
 - Proactive signal detection, with *a priori* drug-AE questions
 - maxSPRT for vaccine safety, potential use for drug safety
 - i3Aperio™

 !! The methods need to be validated !!

- Rapid response to signals
 - Data with numerator and denominator (e.g. i3Aperio™)

- Signal evaluation / Hypothesis testing
 - Well established methods, but results not readily available
 - Database study: weeks to months
 - Clinical trial: months to years
The right people to do all these

- “Drug safety scientists” need to
 - Know the strengths and limitations of different types of data
 - Know how to utilize data in a timely fashion
 - Know how to analyze the data and interpret the findings
 - Interact with scientists of other discipline

- Essential skill set
 - Clinical research methodology
 - Clinical trials
 - Observational studies
 - Familiarity with the health care delivery system
 - Population-based perspective

- Training programs? Training grant?